Package: rrMixture 0.1-2
rrMixture: Reduced-Rank Mixture Models
We implement full-ranked, rank-penalized, and adaptive nuclear norm penalized estimation methods using multivariate mixture models proposed by Kang, Chen, and Yao (2022+).
Authors:
rrMixture_0.1-2.tar.gz
rrMixture_0.1-2.zip(r-4.5)rrMixture_0.1-2.zip(r-4.4)rrMixture_0.1-2.zip(r-4.3)
rrMixture_0.1-2.tgz(r-4.4-x86_64)rrMixture_0.1-2.tgz(r-4.4-arm64)rrMixture_0.1-2.tgz(r-4.3-x86_64)rrMixture_0.1-2.tgz(r-4.3-arm64)
rrMixture_0.1-2.tar.gz(r-4.5-noble)rrMixture_0.1-2.tar.gz(r-4.4-noble)
rrMixture_0.1-2.tgz(r-4.4-emscripten)rrMixture_0.1-2.tgz(r-4.3-emscripten)
rrMixture.pdf |rrMixture.html✨
rrMixture/json (API)
# Install 'rrMixture' in R: |
install.packages('rrMixture', repos = c('https://syeonkang.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:6c87645d9b. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win-x86_64 | OK | Nov 21 2024 |
R-4.5-linux-x86_64 | OK | Nov 21 2024 |
R-4.4-win-x86_64 | OK | Nov 21 2024 |
R-4.4-mac-x86_64 | OK | Nov 21 2024 |
R-4.4-mac-aarch64 | OK | Nov 21 2024 |
R-4.3-win-x86_64 | OK | Nov 21 2024 |
R-4.3-mac-x86_64 | OK | Nov 21 2024 |
R-4.3-mac-aarch64 | OK | Nov 21 2024 |
Exports:initialize.pararrmixrrmix.sim.normtune.rrmix
Dependencies:gtoolslatticeMASSMatrixmatrixcalcRcppRcppArmadillo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Initialization of Parameter Estimates | initialize.para |
Visualize rrmix Objects | plot plot.rrmix plot.tune.rrmix |
Reduced-Rank Mixture Models in Multivariate Regression | rrmix |
Simulation Data Generator | rrmix.sim.norm |
rrMixture: Reduced-Rank Mixture Models. | rrMixture |
Summarize rrmix Objects | summary summary.rrmix summary.tune.rrmix |
Reduced-rank mixture models with optimal tuning parameter(s) | tune.rrmix |