Package: rrMixture 0.1-2

rrMixture: Reduced-Rank Mixture Models

We implement full-ranked, rank-penalized, and adaptive nuclear norm penalized estimation methods using multivariate mixture models proposed by Kang, Chen, and Yao (2022+).

Authors:Suyeon Kang [aut, cre], Weixin Yao [aut], Kun Chen [aut]

rrMixture_0.1-2.tar.gz
rrMixture_0.1-2.zip(r-4.5)rrMixture_0.1-2.zip(r-4.4)rrMixture_0.1-2.zip(r-4.3)
rrMixture_0.1-2.tgz(r-4.4-x86_64)rrMixture_0.1-2.tgz(r-4.4-arm64)rrMixture_0.1-2.tgz(r-4.3-x86_64)rrMixture_0.1-2.tgz(r-4.3-arm64)
rrMixture_0.1-2.tar.gz(r-4.5-noble)rrMixture_0.1-2.tar.gz(r-4.4-noble)
rrMixture_0.1-2.tgz(r-4.4-emscripten)rrMixture_0.1-2.tgz(r-4.3-emscripten)
rrMixture.pdf |rrMixture.html
rrMixture/json (API)

# Install 'rrMixture' in R:
install.packages('rrMixture', repos = c('https://syeonkang.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 5 scripts 189 downloads 4 exports 7 dependencies

Last updated 3 years agofrom:6c87645d9b. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-win-x86_64OKNov 21 2024
R-4.5-linux-x86_64OKNov 21 2024
R-4.4-win-x86_64OKNov 21 2024
R-4.4-mac-x86_64OKNov 21 2024
R-4.4-mac-aarch64OKNov 21 2024
R-4.3-win-x86_64OKNov 21 2024
R-4.3-mac-x86_64OKNov 21 2024
R-4.3-mac-aarch64OKNov 21 2024

Exports:initialize.pararrmixrrmix.sim.normtune.rrmix

Dependencies:gtoolslatticeMASSMatrixmatrixcalcRcppRcppArmadillo

Introduction to rrMixture

Rendered fromrrMixture.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2022-04-08
Started: 2022-03-10